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ABSTRACT

With the tremendous increase in the number of air passengers in the past years, aviation safety has been of
utmost importance. At any given point of time, there will be several flights lining up for landing. Landing in
good visibility conditions is not a problem. However, the problem arises when we have poor visibility conditions,
especially foggy conditions. The pilot finds it difficult to land the flight in poor visibility conditions because
of the difficulty to spot the runway clearly. This paper presents a novel method for detecting the runways and
hazards on it in poor visibility conditions using image processing techniques.

The first step is to obtain the images of a runway on a clear day and compute the smoothness coefficient
followed by edge detection, using the SUSAN edge detection algorithm and then finally develop a database of
the smoothness coefficients and edge detected images. Now, for the foggy images we compute the smoothness
coefficient. Typically, foggy images have low contrast. Hence, before we perform edge detection, we enhance
the image using Multi-Scale Retinex (msr). msr provides the low contrast enhancement and color constancy,
required to enhance foggy images, by performing non-linear spatial/spectral transforms. After enhancement,
the next step is to run the same edge detection algorithm with appropriate thresholds. Finally we determine a
hazard by comparing the edge detected images of images taken under clear and foggy conditions. The paper also
compares the results of the SUSAN edge detection algorithm with the state of art edge detection techniques.
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1. INTRODUCTION

With the increasing demand for air travel, runway safety is of prime importance for Federal Aviation Adminis-
tration (FAA), airlines and airports. Runway safety is an aviation safety concern, involving measures to prevent
runway incursions and overruns. FAA defined a runway incursion as any occurrence involving an aircraft, ve-
hicle, person, or object on the ground that creates a collision hazard or results in a loss of required separation
when an aircraft is taking off, intending to take off, landing, or intending to land. The International Civil Avi-
ation Organization (ICAO) defined an incursion as the incorrect presence of aircraft, vehicle, or person on the
protected area of a surface designated for landing or take-off of aircraft. There had been six runway collisions in
United States in the past since 1990 with the worst accident occurring at the Los Angles International airport
in 1997.1 Increasing number of runway accidents are raising concerns over the safety of air travelers. There can
be several reasons for accidents on the runway. There is a possibility of a landing aircraft running into another
aircraft or unattended vehicle that is holding on the runway. Landing the aircraft in clear conditions is not a
problem for the pilot because the pilot can visualize the situation and act accordingly. There would be a variety
of problems that a pilot could face to land the aircraft in poor visibility conditions, starting from viewing the
runway to determining if the runway is clear. Hazard detection on runways in poor visibility conditions is one
of the current research areas of the NASA’s aviation safety program. Poor visibility conditions could be fog,
haze, smoke or dull lighting conditions. Because the pilot is faced with several tasks before landing, we propose
a novel approach to assist the pilot to determine the runway and detect the hazards on the runway to avoid
accidents.
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Figure 1: The EVS pod used on the NASA Aries Boeing 757.

Our initial approach was based on using the visible camera from NASA’s Enhanced Vision System (EVS)
developed under the Aviation Safety Program. The EVS provides enhanced images of the flight environment
to assist pilots flying in poor visibility conditions. The system has a long-wave infrared (LWIR), a short-wave
infrared (SWIR), and a visible band camera, all mounted in a pod that is flown beneath a NASA 757 aircraft.2

Figure 1 shows the cameras and other components mounted in the pod, and Figure 2 shows the pod installed
on the 757 aircraft. The LWIR and the SWIR imagers are the primary cameras for current aviation safety
research efforts. The visible band camera will not be processed during scheduled flight tests, but remains in this
discussion for future reference. The LWIR is a Lockheed Sanders LTC500 thermal imager and senses radiation
in the 7.5–14 µm band. It can image background scenery, terrain features and obstacles at night and in other low
visibility conditions. The SWIR is a Merlin Near-Infrared (NIR) camera that senses in the 0.9–1.68 µm region
and is optimal for detecting peak radiance from runway and taxiway lights even in poor visibility conditions.
The visible-band camera is a Bowtech BP-L3C-II CCD that detects the 0.4–0.78 µm band and covers imaging
runway markings, skyline and city lights in good visibility conditions.

Additionally, we make use of the ancillary information about the aircraft attitude, altitude, speed, and heading
to correct for the platform motion. This information is available from the aircraft navigation system.

The process of hazard detection, encapsulated in Figure 3, can be described by the following steps:

1. Collecting the imagery and the GPS information: the navigation data and the imagery are correlated with
each other to correct for the impact platform—airplane—motion on the acquired imagery.

2. Enhancing the imagery with the multi-scale retinex (msr) algorithm (Section 3). The msr provide (almost)
illumination independence. It can be applied to all imagery since it does not degrade “good” imagery.

3. Performing edge detection to obtain salient features like runway edges in the image. The determination
of runway boundaries is important in distinguishing between “hazards”—objects of a particular size on
the runway—from other objects. The SUSAN edge detection algorithm3–5 is used to detect edges after
performing image enhancement. The SUSAN operator is non-linear and employs intensity information of
an image for edge and corner detection. This method is simple but it can acquire the edges and corner in
the image with precise localization even for noisy images because it is insensitive to local noise.

4. Determination whether the objects on the runway are hazards by determining their objects from the
temporal sequence of images.

The first step is to collect the imagery of a runway in clear conditions along with the GPS information and
the altitude. Then we compute the smoothing coefficient and perform the edge detection using the SUSAN
edge detection algorithm and store the smoothness coefficient values and the edge image in the database. When



Figure 2. The EVS pod mounted on the NASA Aries Boeing 757. The sensors point down at a 4◦ angle with respect
to the belly of the aircraft.

the aircraft is ready to land, we take the imagery and correct it for the attitude by using the GPS information.
Then we compute the smoothness coefficient and compare it with the smoothness coefficient values in the
database for the corresponding GPS information. If the value is more than the value in the database, then it
indicates that the image is foggy. Then we apply the Multi-Scale Retinex (msr) to the image which is an image
enhancement technique. Image enhancement is not required if the smoothness coefficient is lower than the value
in the database. Then we take the edge image using the SUSAN edge detection operator. The threshold is
higher for the image with lower smoothness coefficient than the enhanced imaged. After we get the edge image,
we subtract it from the edge image in the database. If there is a significant difference, then we say that there
is a hazard, else, we say that the runway is safe to land.

2. SMOOTHING COEFFICIENT

The degree of smoothness of an image depends upon the amount of energy in the high frequencies. Hence, the
smoothness can be quantified by using measuring the energy in the image at high frequencies. The smoothness
coefficient is given by the following equation:6
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The smoothness coefficient, S, represents the reciprocal of the amount of energy in the high-pass filtered version
of the input image, I: the higher the amount of energy, the more the high frequency information. Since, the



Figure 3: Illustration of the flow for detection runway hazards.

high-frequency information is directly correlated to the fine details in an image, the smoother an image the
larger the S.

Figure 4 displays the images with the decreasing amount of fog and Figure 5 shows their corresponding
smoothness coefficients.

3. MULTI-SCALE RETINEX

A fundamental concern in the development of resilient, vision-based, automation technology is the impact
of wide-ranging extraneous lighting and exposure variations on the acquired imagery. This concern can be
considerably ameliorated by the application of the (msr) image-enhancement algorithm.7–11 The msr is a non-
linear, context-dependent enhancement algorithm that provides color-constancy, dynamic range compression
and sharpening:

Ri(x1, x2) =
κ
∑

k=0

wk (log (Ii(x1, x2)) − log (Ii(x1, x2) ∗ Fk(x1, x2))) , i = 1, . . . , N, (3)

where Ii is the ith spectral band of the N -band input image, Ri is the corresponding is the Retinex output, ‘∗’
represents the (circular) convolution operator, F is a (Gaussian) surround function, and κ is the number of the
scales. The Gaussian surround function is given by:

Fk(x1, x2) = akGk(x1, x2) (4)
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Figure 4: Impact of decreasing fog density on visibility.

Figure 5. Smoothness coefficients as a function of fog density: the heavier the fog the larger the smoothness coefficient.



Figure 6. The image enhancement operator successfully compensates for changing illumination conditions and exposure
errors. The camera aperture, shutter speed, and ISO setting were constant over this sequence.

The σk are scale parameters that control the performance of the ssr: small σk lead to ssr outputs that contain
the fine features in the image at the cost of color, and large σk lead to outputs that contain color information,
but not fine detail.8, 9

In order to extract consistent scene structure from any image under widely varying scene and sensor con-
ditions, one has to think in terms of transforming the image into a “canonical” representation that effectively
eliminates such undesirable variability. The msr has proven to be a powerful tool for doing just this. Because of
its dynamic range compression and illumination independence properties, the msr provides consistent rendering
for imagery from highly diverse scene and sensor conditions. To expand the performance envelope of the msr

to handle narrow dynamic range images encountered in turbid imaging conditions such as fog, smoke, and haze,
dim lighting conditions, or significant under- or over-exposures, we have developed a “smart” framework of
visual quality measurements and enhancement controls that we call the Visual Servo12–14 (vs). The vs assesses
the quality of the image in terms of brightness, contrast and sharpness, and controls the strength of the msr

enhancement. This combination of the vs with the msr is called the vmsr. Figure 6 shows a sequence of im-
ages and its enhancement under visibility conditions that range from acceptable to unacceptable. The enhanced
image provides useful information in every case regardless of the caliber of the original data.

Additionally, the enhancement can provide better-than-observer performance in many cases, especially when
the obscuration is due to fog, rain, or light clouds in otherwise good illumination. Figure 7 shows the performance
of the image enhancement operator on imagery acquired under hazy and cloudy imaging conditions. The
enhancements were compared with the recollections of the observer about the extent to which he could discern
features with the naked eye, or through the camera, at the time the image was acquired. In each case, according
to the observer, the enhanced imagery provided more information than could be discerned either through the
view-finder of the camera or with the naked eye. Although this is not a rigorous scientific test, it does justify
laying the groundwork for further testing and analysis.

The image enhancement process also provides illumination independence, i.e., the output of the algorithm
is (almost) independent of the type, or level, of illumination under which the image was acquired. This is
especially critical for automatic classification and detection algorithms that rely on comparing imagery of the
same scene at different times. The ability of the algorithm to produce images that are independent of the
change in illumination conditions due to changing sun angle and atmospheric conditions considerably simplifies
the automation process for detection and classification. Figure 8 shows an example illustrating the illumination
independent output produced by the algorithm.

The fundamental problems relating to enhancement of still imagery have been addressed in Jobson, et al.7, 8

and Rahman et al..9 Additionally, issues relating to enhancement of imagery under poor visibility conditions
have been addressed in Jobson et al.12, 15 and Woodell et al..14, 16



Figure 7. Images acquired with a Nikon Digital D1 camera during NASA Langley Research Center’s FORESITE test
flights. The enhancements provide better-than-observer visibility.

Figure 8. The impact of illuminant change was simulated by red, blue, and green shifting an image (top row). The msr

outputs are almost perfectly color constant (bottom row).



4. SUSAN EDGE DETECTION

After the preprocessing stage (if required), the next step is to perform the edge detection to determine the
hazards on the runway. Edge detection is used because it is the basic low level primitive for image processing
which conveys the structural information about the structures in the image. Edge detection performs the filtering
operation to reduce the amount of data in the image by removing the irrelevant information and preserving the
structural information in the image.

There are many edge detection operators like Canny, Sobel, Marr-Hildreth, that are widely used which have
their own drawbacks. Some of the drawbacks are poor connectivity at the edges and the corners being rounded.
Also, with the increase in the Gaussian filter, there is a decrease in the noise levels at the expense of accuracy
in localization of edges. The authors have resorted to the SUSAN edge detection operator, a non-linear filtering
operator, which is above the drawbacks of most of the other edge detection operators.

The main idea of the SUSAN edge detection operator is to associate a small area of neighboring pixels with
similar brightness to a center pixel. This small area of pixels with similar brightness is termed as USAN, which
is an acronym for Univalue Segment Assimilating Nucleus. This phenomenon of associating each point in the
image with an area of pixels with similar brightness is the basis for the SUSAN principle. The USAN contains
lot of information about the structure of the image which is effectively region finding on a small scale. From the
size, centroid and the axis of symmetry of the USAN, the edges and two dimensional features can be detected.
The acronym SUSAN (Smallest Univalue Segment Assimilating Nucleus) comes from the principle which states
that, an image processed to give as output inverted USAN area has edges and two dimensional features strongly
enhanced, with the two dimensional features more strongly enhanced than edges.

The SUSAN edge detection algorithm is implemented using circular masks of 37 pixels (radius of 3.4 pixels).
The mask is as follows:

Mask =
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1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
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(7)

This mask is placed at each pixel in the image and the brightness of each pixel in the mask is compared with
the nucleus using the following equation:

c(~r, ~r0) =

{

1 if |I(~r) − I(~r0)| ≤ t
0 if |I(~r) − I(~r0)| > t

(8)

where ~ro is the position of the center pixel, ~r is the position of neighboring pixels in the mask in the two
dimensional image, I(~ro) is the intensity of the nucleus, I(~r) is the intensity of other pixels in the mask and t is
the threshold. The parameter t is used to determine the minimum contrast of features and maximum amount
of noise to be ignored. For a foggy image, the value of t is smaller when compared to that of a clear image
because the foggy images have lower contrast. Figure 9 shows the edges of an image in clear conditions. The
number of pixels in the USAN is counted as follows:

n(~ro) =
∑

~r

c(~r, ~ro). (9)

After finding the value of n, it is compared with the geometric threshold:

R(~r0) =

{

g − n(~ro) if n(~ro) < g
0 otherwise,

(10)



Figure 9. Examples of SUSAN edge-detection: (top-left) original image; (top-right) corresponding edge image; (middle-
left) original image with a truck on the runway; (middle-right) corresponding edge image; (bottom) the difference of the
two edge images.

where the geometric threshold (g) is set to 3nmax/4 for optimal noise rejection with nmax being the number of
pixels in the mask and R(~r0), the initial edge response. The algorithm gives pretty good results, but a much
more stable equation which is smoother version of Equation 8 is as follows:

c(~r, ~r0) = exp

(

−

(

I(~r) − I(~r0)

t

)6
)

. (11)

This equation allows the pixel brightness to vary slightly without having a large effect on the value of c, even
if it is near the threshold position. Figure 10 shows the foggy images and their edge images.

5. COMPARISONS

Edge-detection techniques like Sobel and Prewitt17 use a small convolution kernel for estimating the first
derivative of an image to extract the edges. These methods do not provide a high degree of edge localization
and smoothing. Edge detection techniques like Canny18 that are widely popular, finds edges by minimizing
the error rate, marking edges as closely as possible to the actual edges to maximize localization and marking



edges only once when a single edge exists for minimal response. Canny uses the calculus of variation to satisfy
the criterion and derive the optimal function which is a close approximation to the first derivative of the
Gaussian function. Non-maximum suppression is performed followed by removal of edges using thresholding.
Thresholding is applied with hysteresis. While performing the Gaussian convolution can be fast, the hysteresis
stage can slow down the computation. Even though the results from the Canny are stable, it does not provide
good edge connectivity and the corner are rounded. The scale of the Gaussian determines the amount of noise
reduction. With the increase in the size of the Gaussian, the smoothing effect increases resulting in poor edge
localization. The fact that the SUSAN edge detection algorithm does not use any image derivatives gives a
good reason for its performance in presence of noise. Because the SUSAN edge detection technique uses the
USAN area, it provides better localization, good connectivity and no false edges. The computation speed of the
SUSAN edge detection is about 10 times faster than Sobel and Canny which is very important in applications
like the one described here. Because of the integrating effect and its non-linear response, the SUSAN gives
shows good tolerance to noise. Figure 10 (third-row) shows examples of the performance of the Canny operator
on images of interest. The performance of the SUSAN algorithm (Figure 10 (bottom-row)) is superior to that
provided by Canny and does not depend on selecting an optimal threshold value for each of the images.

6. CONCLUSIONS

In this paper, we have presented a novel method for detection of hazards on the runways in poor visibility
condition. This technique assists the pilot at the time of landing the aircraft by automatically detecting the
hazards on the runway. The algorithm uses the msr image enhancement technique which performs well under
poor visibility conditions. The SUSAN edge detection algorithm was used for foggy images and provided good
results. Also, the SUSAN edge detection algorithm is fast when compared to other state of the art techniques.
The work presented here is in initial stages and system design has not been finalized. There could be a few
more add-ons to make the system more robust to varying illumination and weather conditions. Also, the results
provided in this paper are not the images of the runway because; we could not acquire the runway images in
foggy conditions. However, the good results that are provided in the initial stages provide a good platform for
further improving this project.
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